

Exploiting Verific tools and features at the right abstraction level

Andy Fox, Edvard Ghazaryan, Hovhannes Ter-Milqsetyan, Tigran Sargsyan and Vigen Gasparyan

www.rushc.com

First published on Tech Design Forum, Aug 29, 2014

EDA vendors and internal CAD teams use Verific parsers for tool development. Here’s how one

company developed its strategy for this popular technology.

Introduction

Verific Design Automation specializes in Verilog, VHDL and SystemVerilog language processing sub-

systems. Its users develop software where Verific-based technology serves as the front end for a wide

range of EDA and FPGA design tools. These tools are used during analysis, simulation, verification,

synthesis, emulation and test.

This article discusses the use of Verific technology by our team at the Really Useful Software and

Hardware Company. We hope these experiences will be of use to the many other Verific users out there

and we also describe our own efforts to extend the technology with a series of 'apps' addressing common

tool developer issues.

Before getting into our use strategies, we need to start with a quick backgrounder on Verific's offering.

Verific’s tool kit reads in hardware description languages (HDLs), chiefly SystemVerilog, Verilog and

VHDL. Depending on the elaboration needed, it offers four levels of abstraction:

 Parse tree

 Statically elaborated parse tree

 Operator netlist

 Gate level netlist

Determining how best to choose between these levels will be one of the main themes of this article, but

first we need to look a little closer at each type.

Parse tree-based elaboration

The parse tree representation is generated during analysis and traversed using a walker. A range of walker

templates ensures that each syntax category can be easily traversed. Static elaboration further expands the

parse tree by resolving parameters as well as generating statements and other statically determinable

aspects of the HDL.

So, as an example, a developer can use the ‘VhdlExpression’ walker class to add a type checker that

catches any mismatch in the sizes of a VHDL relational operator. The Verific code elaborates the walker

so that the developer can get a type for any identifier reference. Each identifier instance is represented as

an ‘IdReference’ that in turn refers to an ‘IdDefinition’ field from which all type information about the

identifier can be extracted.

The parse tree can be structured to resolve data types as necessary for, say, such instances as the

evaluation of recursive functions or the resolution of dynamically assigned ranges in VHDL. Mixed-

language support is provided using a ‘vl_types.vhd’ package that permits various type conversions.

Operator netlist and gate-level netlist elaboration

Full elaboration translates a parse tree to a netlist by way of synthesis. With a little care, operators can be

preserved and a bus-oriented or unflattened data model extracted. This is called the ‘operator netlist’.

The operator netlist is useful because it provides the semantics of the language via operators, including

decoders, shifters and state elements. It also has a wide operators function for bus level structures (this

function is known as a ‘netbus’ or ‘portbus’ in Verific terminology).

The same netlist view is generated for all languages. This provides a good starting point when a project

includes tasks such as writing a simulation accelerator applicable to synthesizable designs written in any

supported HDL.

Moreover, because Verific takes care of the language processing, the developer needs only to understand

the netlist. A Verific netlist itself follows the traditional and familiar Electronic Design Interchange

Format (EDIF)-type hierarchy of library, cells, instances, views and ports.

Using one of the APIs in the Verific toolkit, the user can flatten the operator-level netlist to primitive

gates, such as PRIM_AND, PRIM_OR and PRIM_XOR. At this fourth level of elaboration, the full logic

of the design is available.

The various abstraction levels are also summarized in Figure 1.

FIGURE 1 Verific abstraction levels (Source: Verific/RUSHC)

Integrating Verific into a software flow

Once the appropriate Verific libraries have been linked, Verific’s C++ APIs can be called directly from a

developer’s code. The APIs used most often are‘Analyze’ and ‘Elaborate’. The Verific data structures are

usually entered through either the top-level parse tree module (Verific API: veri_file::GetTopModules) or

the netlist (Netlist::PresentDesign()).

At this point, most developers translate Verific structures to their own databases and continue

independently of the Verific code base. However, the Verific netlist is stable enough to use in the

developer’s environment and that is our focus here. The challenge then lies in enabling such use so that

the developer’s in-house code base investment is protected while the Verific code is safety exploited also.

At RUSHC, we have run Verific evaluations based on three strategies that address this challenge:

Deriving the Verific classes from a generic abstract class

Deriving customer-specific classes from the Verific classes

Template-based strategies. Creating algorithms parameterized by abstract types that provide concrete

interfaces and use ‘hardened’ Verific types.

http://www.techdesignforums.com/practice/files/2014/08/verific_rushc_fig1.png

Options (a) and (b) allow all Verific APIs to be accessible natively from customer code. But it is option

(c) that offers the broadest set of use cases by quickly allowing core algorithms to be ported to new

structures. This option also keeps the style adopted by boost libraries.

Consider this representation of a ‘cut’ in a netlist, the cut being nothing more than a group of pins

delineating a region of a netlist. The abstract class for a cut is shown in Figure 2.

FIGURE 2 Abstract class for a cut (Source: RUSHC/Verific)

Note that the DesignObjectType is left as a type parameter. A concrete version of the cut and its various

algorithms are then realized by hardening the type of the DesignObjectType to the Verific specific type

‘PortRef’, as shown in Figure 3.

http://www.techdesignforums.com/practice/files/2014/08/verific_rushc_fig2.png

FIGURE 3 Cut and algorithms hardened (Source: RUSHC/Verific)

We used this approach to build a set of library routines and useful applications for formal verification and

synthesis that make full use of the Verific database and that are broad enough for use on multiple

structures. Specifically, RUSHC was able to port a full formal verification method approach for

generating timing exceptions from the Verific database to a customer database in a matter of days.

Case studies emphasize abstraction choices

We found that the key to success lay in determining the best level of abstraction in the Verific flow: parse

tree (statically elaborated or not), operator netlist or primitive netlist. Problems will arise if this decision is

not thought through carefully. The following scenarios show how RUSHC made its choices on three

different projects and could help you do the same.

1: A mapping solution

This project required the development of a high-speed technology mapping solution. Operators needed to

be extracted by library operators and novel cut generation and matching algorithms devised.

The primitive netlist level of abstraction was chosen. This decision freed EDA developers from having to

code HDL processing/elaboration. They could instead focus on innovation through algorithm

development. The Verific netlist produced by elaboration was further improved by the SAT Sweeping

technique for simplifying an AND/INVERTER graph (AIG) [6]. A template for a mapping and matching

solution was devised that could be run on both the Verific netlist and the data structures used after place-

and-route.

This project illustrated the value of creating templates and the stability and efficacy of the Verific

database.

2: RTL acceleration for a synthesizable HDL subset

http://www.techdesignforums.com/practice/files/2014/08/verific_rushc_fig3.png

This project required the extraction of novel instructions (including MULT, LD, ADD, and STR) with

hardware specific ones (e.g., TAP x [10:0]) to fish bits out of busses from an HDL for execution on a

simulation hardware accelerator.

The client initially wanted to roll its own elaborator and was investing heavily to resolve complicated and

generic HDL issues.

However, we determined that the project only needed the synthesizable HDL subset.

An operator level netlist elaboration was used as the basis for the machine instruction generation. Within

a few weeks, the instructions were being generated.

The focus of the project shifted to establishing the value of high-speed simulation acceleration from

resolving complicated HDL issues. Lesson learned: avoid becoming an HDL processing guru unless that

is your core business.

3: Formal methods for timing exception checks

This project required the development and application of timing exception proving algorithms using

formal methods such as AIG techniques.

From the start, data structures beyond the Verific netlist were required. So were Verilog counter examples

and, where possible, references to the users’ source HDL had to be inserted.

The Verific netlist database was chosen as the starting point, freeing the EDA team from learning HDLs.

A utility for translating the Verific netlist to an ABC [7] AIG was devised and a method for correlating

inputs/outputs and user nets in both netlists was constructed. Verific’s code has an API for marking nets

that appear in the user’s source HDL as a user net, ‘net -> isUser()’.

High-speed algorithms were devised for simulation, bounded model checking, and fixed-point analysis.

As before, a template-based approach to algorithm development was used. Trade-offs were made between

algorithms best run on the Verific netlist database (such as simulation for candidate filtering), and those

best run on the AIG model (such as bounded model checking and ternary simulation for fixed point

analysis).

By starting with the Verific database annotated with user source/line information, algorithms were

provided with useful information about the original design. Nevertheless, by adopting a template-based

approach to development, the core algorithms were easily applied to both the company’s database and the

Verific database.

Going further

Our experiences at RUSHC led us to develop a wishlist of generic utilities for the Verific code base that it

would be useful to develop. It included:

 A package for checking the parse tree for well known language gotchas and warnings. Every

design team wants better error reporting.

 Redundancy removal and SAT-sweeping. Many applications need to start from the smallest

netlist possible.

 Design Manager. The Verific APIs provide basic “analyze” and “elaborate” type functionality

and support for Verilog-XL / VCS type –f options. Most applications demand a wrapper for

supporting command line arguments, handling multiple libraries and invoking VHDL file sorting

etc. This is common code that should be shared.

 Core algorithms running on Verific netlist representations for verification, library-based

technology mapping, pretty printing, including dot file generation, and basic netlist utilities, such

as standard depth first search and breadth first search functors.

To fill some of these gaps, we have gone on to develop the Veriapps (for Verific Applications) package.

This library of utilities operates on the Verific data structures. The packages shown in Figure 4 below are

accessible via C++ or the Verific Perl interface, and the code is available in source form.

It is often said that you should stick to their core competencies. Verific’s HDL parsers and elaborators let

those of us working on design software do just that, saving time and optimizing resources. Our hope now

is that RUSHC’s Veriapps package will provides a tool kit that complements them, based on real-world

experience with the technology.

About RUSHC

RUSHC comprises a team of EDA engineers with extensive experience developing Verific-based

applications. It has offices in both the United Kingdom and Armenia. Find out more about the company

at www.rushc.com.

http://www.rushc.com/

FIGURE 4 Currently available Veriapps (Source: RUSHC)

http://www.techdesignforums.com/practice/files/2014/08/verific_rushc_fig4.png

