head and shoulders above the rest...

Design Automation

BUILD YOUR OWN RTLTOOLS

with Verific’s industry standard
parsers and elaborators

-

v

. b
Verilog &
arse Tree

Static Elab <>

Synthesis /
| Elaboration —I

PN Static Elab

‘
I Elaboration

L(
| Netlist

Database
S —

Perl / Python APIs

powered

Not every EDA application needs to
be written in C++. Therefore Verific
has enabled its industry standard
SystemVerilog, UPF, and VHDL
parsers with a complete Perl and
Python interface. All regular Verific
functionality is now available at your

Perl or Python fingertips.

® DParscand analyze
e Elaborate

® Traverse and manipulate the
parse tree and netlist

® Modify RTL and print out with
comments and layout preserved

® Find, insert, remove, and
change modules, ports, nets,
etc..

e Keep / flatten hierarchy

® Group / ungroup

All through easy to understand Perl
and Python APIs.

RTL modifications, debug
insertion, design for test
adjustments, interface changes,
clock domain checks, you name it:
It is all easily accomplished with
Verific’s parsers and data

structures.

- Verific Design Automation, Alameda, CA (510) 522-1555 www.verific.com

#!/usr/bin/perl
use Verific;

this application parses a SystemVerilog design,
finds all clock nets, and prints them to stdout

$file name = “example.sv”;
Verific::veri file::AddIncludeDir (“/usr/local/verilog”) ;
Smode = SVerific::veri file::SYSTEM VERILOG ;

Analyze the design. In case of failure return
if (!Verific::veri file::Analyze($file name, S$mode)) {
exit(1l);

Elaborate all analyzed design units. In case of failure return
if (!Verific::veri file::ElaborateAll()) {
exit (1) ;

Get a handle to the top-level design
Stop = Verific::Netlist::PresentDesign() ;

Flatten down to primitives
Stop->Flatten() ;

Iterate over all DFF instances
Sinsts = Stop->GetInsts();
Siter = S$insts->Iterator (“Instance”);
for (my $inst = S$Siter->First; S$iter < S$iter->Size; S$inst = $Siter->Next) {
if ($inst->Type() eq $Verific::PRIM DFF ||
Sinst->Type () eq $Verific::PRIM DFFRS) {

Get clock net for this flipflop
my $clock net = Sinst->GetClock();

Use a Perl hash table to check if the net has occurred before
and if not, print to screen
if (!defined(Sclocknets{$clock net->Name()})) {
Have not seen this clock net before
printf “-- Net %s is a clock net\n” , S$clock net->Name() ;
$clocknets{$clock net->Name () }=1;

All done. Wasn’t that verific!

Design Automation June 2017

- Verific Design Automation, Alameda, CA (510) 522-1555 www.verific.com

